首页> 外文OA文献 >A Parametric Level Set Approach to Simultaneous Object Identification and Background Reconstruction for Dual Energy Computed Tomography
【2h】

A Parametric Level Set Approach to Simultaneous Object Identification and Background Reconstruction for Dual Energy Computed Tomography

机译:一种用于同时物体识别的参数水平集方法   双能量计算机断层扫描的背景和重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dual energy computerized tomography has gained great interest because of itsability to characterize the chemical composition of a material rather thansimply providing relative attenuation images as in conventional tomography. Thepurpose of this paper is to introduce a novel polychromatic dual energyprocessing algorithm with an emphasis on detection and characterization ofpiecewise constant objects embedded in an unknown, cluttered background.Physical properties of the objects, specifically the Compton scattering andphotoelectric absorption coefficients, are assumed to be known with some levelof uncertainty. Our approach is based on a level-set representation of thecharacteristic function of the object and encompasses a number ofregularization techniques for addressing both the prior information we haveconcerning the physical properties of the object as well as fundamental,physics-based limitations associated with our ability to jointly recover theCompton scattering and photoelectric absorption properties of the scene. In theabsence of an object with appropriate physical properties, our approach returnsa null characteristic function and thus can be viewed as simultaneously solvingthe detection and characterization problems. Unlike the vast majority ofmethods which define the level set function non-parametrically, i.e., as adense set of pixel values), we define our level set parametrically via radialbasis functions (RBF's) and employ a Gauss-Newton type algorithm for costminimization. Numerical results show that the algorithm successfully detectsobjects of interest, finds their shape and location, and gives a adequatereconstruction of the background.
机译:由于双能计算机断层扫描能够表征材料的化学成分,而不是像常规断层扫描那样简单地提供相对衰减图像,因此倍受关注。本文的目的是介绍一种新颖的多色双能量处理算法,该算法着重于检测和表征嵌入未知,杂乱背景中的逐段常数物体。假定物体的物理特性(特别是康普顿散射和光电吸收系数)是已知的有一定程度的不确定性。我们的方法基于对象的功能的水平集表示,并且包含多种正则化技术,用于解决我们已经关注的有关对象物理特性的先验信息以及与我们的能力相关的基本的,基于物理的限制。共同恢复现场的康普顿散射和光电吸收特性。在没有具有适当物理特性的对象的情况下,我们的方法会返回空特征函数,因此可以视为同时解决检测和表征问题。与绝大多数以非参数方式定义水平集功能(即像素值的附加集)的方法不同,我们通过径向基函数(RBF)以参数方式定义我们的水平集,并采用高斯-牛顿型算法进行成本最小化。数值结果表明,该算法成功地检测出感兴趣的对象,找到了它们的形状和位置,并对背景进行了适当的重建。

著录项

  • 作者

    Semerci, Oguz; Miller, Eric L.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号